Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions.

نویسندگان

  • Pimpon Uttayarat
  • George K Toworfe
  • Franziska Dietrich
  • Peter I Lelkes
  • Russell J Composto
چکیده

To mimic the uniformly elongated endothelium in natural linear vessels, bovine aortic endothelial cells (BAECs) are cultured on micro- to nanogrooved, model poly(dimethylsiloxane) (PDMS) substrates preadsorbed with about 300 ng/cm(2) of fibronectin. BAEC alignment, elongation, and projected area were investigated for channel depths of 200 nm, 500 nm, 1 microm, and 5 microm, as well as smooth surfaces. Except for the 5 microm case, the ridge and channel widths were held nearly constant about 3.5 microm. With increasing channel depth, the percentage of aligned BAECs increased by factors of 2, 2, 1.8, and 1.7 for 1, 4, 24, and 48 h. Maximum alignment, about 90%, was observed for 1 microm deep channels at 1 h. The alignment of BAECs on grooved PDMS was maintained at least until cells reached near confluence. F-actin and vinculin at focal adhesions also aligned with channel direction. Analysis of confocal microscopy images showed that focal adhesions localized at corners and along the sidewalls of 1-microm deep channels. In contrast, focal adhesions could not form on the bottom of the 5-microm deep channels. Cell proliferation was similar on grooved and smooth substrates. In summary, PDMS substrates engraved with micro- and nanochannels provide a powerful method for investigating the interplay between topography and cell/cytoskeletal alignment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata.

Contact guidance refers to the reactions of cells with the topography of their substratum. Current hypotheses on the mechanism of contact guidance focus on the dynamic behaviour of the cytoskeletal components, but most observations have been made on cells that have already become oriented with topographic features of the substratum. The purpose of this study was to examine the sequence in which...

متن کامل

Migration of Periodontal Ligament Fibroblasts on Nanometric Topographical Patterns: Influence of Filopodia and Focal Adhesions on Contact Guidance

Considered to be the "holy grail" of dentistry, regeneration of the periodontal ligament in humans remains a major clinical problem. Removal of bacterial biofilms is commonly achieved using EDTA gels or lasers. One side effect of these treatment regimens is the etching of nanotopographies on the surface of the tooth. However, the response of periodontal ligament fibroblasts to such features has...

متن کامل

Epithelial contact guidance on well-defined micro- and nanostructured substrates.

The human corneal basement membrane has a rich felt-like surface topography with feature dimensions between 20 nm and 200 nm. On the basis of these findings, we designed lithographically defined substrates to investigate whether nanotopography is a relevant stimulus for human corneal epithelial cells. We found that cells elongated and aligned along patterns of grooves and ridges with feature di...

متن کامل

Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration

Directed migration by contact guidance is a poorly understood yet vital phenomenon, particularly for carcinoma cell invasion on aligned collagen fibres. We demonstrate that for single cells, aligned architectures providing contact guidance cues induce constrained focal adhesion maturation and associated F-actin alignment, consequently orchestrating anisotropic traction stresses that drive cell ...

متن کامل

Effect of Nano-to Micro-Scale Surface Topography on the Orientation of Endothelial Cells

The effect of grating textures on the alignment of cell shape and intracellular actin cytoskeleton has been investigated in bovine aortic endothelial cells (BAECs) cultured on a model cross-linked poly(dimethylsiloxane) (PDMS). Grating-textured PDMS substrates, having a variation in channel depths of 200 nm, 500 nm, 1 pm and 5 pm, were coated with fibronectin (Fn) to promote endothelial cell ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 2005